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Abstract: The quantum breathers (QB) state in terms of two-phonon bound state (TPBS) via detailed quantum calculations 

was already shown in ferroelectrics in a periodic boundary condition. In this work on metamaterials for application in 
antenna arrays as split-ring resonators (SRR), only the temporal variation of the number of quanta in a non-periodic 

boundary condition is detailed for a Klein-Gordon lattice. A generalized Hamiltonian containing dielectric permittivity is 

considered which was then quantized by bosonic operators to study the temporal evolution of quanta. Moreover, the time of 

redistribution of quanta that is proportional to QB’s lifetime in femtosecond shows significant variation with different 

quanta at different values of dielectric permittivity, which has implications in the applications in relevant devices.  
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I. Introduction 

In the field of applied physics, a fertile ground is created by a tremendous amount of both theoretical and 

experimental research work on nonlinear optics in the realm of nanotechnology, particularly on discrete breathers 

that depend on both nonlinearity and discreteness. The majority of these investigations have been carried out 

with the help of nonlinear Schrodinger equation (NLSE) on optical materials, such as ferroelectrics, 

metamaterials, and others. In a recent work [1], it has been shown that nonlinear Klein-Gordon (NLKG) equation 

can also be used in describing the modal behaviour in metamaterials. A careful analysis of both NLSE and 

NLKG indicates that apart from showing both dark and bright discrete breathers, the presence of breather pulse 

can also be observed through NLKG, but not by NLSE. In further upgradation of this work from classical 

breathers to quantum breathers, two-phonon bound states (TPBS) are explored in terms of periodic boundary 

condition. Moreover, our main focus remains on the temporal evolution of quantum breathers in such engineered 

materials in a non-periodic boundary condition approach with an eye on THz applications, as these materials 

show large magnetic response at THz frequency. Before going to the discrete breathers in the quantum regime, 

for the sake of generality, let us briefly describe the metamaterials.   

Substances with both negative dielectric constant (ε) and magnetic permeability (µ) are predicted to possess a 

negative index of refraction, and consequently they exhibit a variety of optical properties that are not found in 

positive indexed materials. This was first formulated in 1968 by Veselago [2]. With negative refraction, such 

materials have quite an interesting history in terms of fabrication and measurement techniques [3-8]. However, 

these negative indexed materials called metamaterials do not occur in nature, and only recently it has been 

possible to artificially fabricate them. For example, to say that metamaterials possess a negative index is a special 

case nowadays, if cloaking is considered [9]. Also many anisotropic materials, such as calcite, exhibit negative 

refraction, as discussed by Boardman et al [10].  

A natural question comes to our mind: in what sort of materials can these properties be observed? This question 

was answered by Smith et al [11] in terms of experimental realization of such materials based on some 
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theoretical work of Pendry et al [12], where a type of metamaterial was made as an artificial structure. From the 

theoretical standpoint, if one makes a good approximation, the split-ring-resonators (SRR) assembly can be 

considered as equivalent to a nonlinear resistor-inductor-capacitor (RLC) circuit [13,14] that features a self-

inductance L from the ring, Ohmic resistance R to take care of dissipation, and capacitance C from the split in the 

ring. Metamaterials are then formed as a periodic array of SRRs which are coupled by mutual inductance and 

arrayed in a material of dielectric constant ε . SRRs being the building blocks, a large number of loosely coupled 

SRRs may be taken for a study of the dynamical behavior of a metamaterials system.  

As RLC circuit model is considered, the system behaves as capacitively loaded loops. It is known that these 

loops support wave-propagation. As the coupling is due to induced voltages, the waves are referred to as 

magneto-inductive (MI) waves [5]. MI waves represent a vast area of active research. Due to RLC configuration 

of the SRRs, there exists a resonant frequency. It is observed that these MI waves propagate within a band near 

the resonant frequency of the SRRs. Also, the magnetic permeability does not depend on the intensity of the 

electromagnetic field in the linear regime of wave propagation. Accordingly, the nonlinearity is incorporated in 

the system by embedding the SRRs in a Kerr-type medium [15,16].  

Kourakis et al [17] studied the self-modulation of the waves by nonlinear Schrodinger equation that led to 

spontaneous energy localization via the generation of localized envelope structures (i.e. so called envelope 

solitons) and the dynamics of the nonlinear RLC circuit gave rise to a governing equation for SRRs in both space 

and time dimensions. There are important observations made on the appearance of multisolitons by controlling 

various parameters by a number of workers with numerical solutions [18,19]. Lazarides and co-workers [13,14] 
also studied classical discrete breathers in metamaterial systems. After describing metamaterials, let us next 

discuss about discrete breathers. 

Discrete breathers (DB) [20], also known as intrinsic localized modes, are nonlinear excitations that are produced 
by the nonlinearity and discreteness of the lattice. These excitations are characterized by their long time 

oscillations and are highly localized pulses in space that are found in the discrete nonlinear model formulation.             

Unlike the plane wave like modes, DBs have no counterparts in the linear system, but exist only because of the 

system nonlinearity in a periodic lattice [21,22]. They are formed as a self-consistent interaction or coupling 

between the mode and the system nonlinearity. Thus, DB modifies the local properties of the system that 

provides the environment for the DB to exist. In relevance to metamaterials, Smith and Pendry [23] showed that 

inclusions smaller than electromagnetic wavelength of interest could be considered only through homogenization 

of field in any periodic structure via field-averaging method for several basic metamaterial structures.  

As the continuum limit formulation cannot be applied to their study, the present formulation on discrete Klein-

Gordon lattice is appropriate to highly localized pulses having widths that are not large compared to that of 

domain of interest [24]. So, the question is about the appropriate length scale, which drives us to the nano-range 

in metamaterials. Thus, localization also assumes more significance. As the nonlinearity arises in such materials 

due to the nonlinear Kerr medium, it could also give rise to the localization, possibly with the coupling and 

dielectric permittivity within the SRR system that are embodied in the discrete Hamiltonian [14]. DBs are 

discrete solutions, periodic in time and localized in space and whose frequencies extend outside the phonon 

spectrum [20,21]. This may also be described by our discrete Hamiltonian [24,25] by adding magnetic 

components in the system. After discussing about classical breathers, next let us look for quantum breathers. 

For the characterization of DBs or classical breathers [26], the bulk system was the right tool, but for systems 

that are very small, the laws of classical mechanics are not valid, which brings us to the quantum breathers (QBs) 

[27,28]. Once generated, QBs modify system properties such as lattice thermodynamics and introduce the 

possibility of non-dispersive energy transport [29]. Special significance is attached to the study of QB due to its 

possible application in the field of quantum computation. To name a few, Quach et al [30] studied reconfigurable 

MMs and Rakhmanov et al [31] studied quantum Archimedean screw for superconducting electronics using 

MMs, and many others studied them for medicine to aeorospace applications. There are so many other 

applications, as given in Ref [32] viz. ladder array of Josephson junction for superconductors, BEC in optical 

lattices, optical waveguides, micro-mechanical arrays, DNA, SRR based metamaterials in antenna arrays, two-

magnon bound states in antiferromagnets, and two-phonon bound states (TPBS), i.e. quantum breathers in 

ferroelectrics. As pointed out by Zheludev [8], the quantum-effect enabled systems via metamaterials route will 

bring a range of exciting applications in the future. 



 

B. Mandal et al:  Femtosecond response of quantum discrete ….                    

 

61

For QBs, it is important to consider detailed information on phonons and their bound state concept, which is 

sensitive to the degree of nonlinearity. The branching out of the QB state from the single-phonon continuum is 

quite noteworthy in nonlinear systems with charge defects [32]. Let us consider that the phonons in one 

sublattice may hop from one domain to another adjacent domain. This hopping might have some consequences 

with the change of nonlinearity, thereby a relation could be worked out for the ‘hopping strength’. It is 

determined by finding the phonon energy gap in the eigenspectrum by analyzing the QB state [20,33]. While the 
role of nonlinearity is still a debatable issue, at around room temperature, there are very few phonons and hence 

we investigated only TPBS. It can be realized experimentally by a Raman scattering experiment similar to that 

done by Santori et al [34]. The evidence of such TPBS was shown in an interesting work by Cohen and Ruvalds 

[35]. Also, Nelson et al worked on anharmonic vibrations in ferroelectrics by impulsive stimulated Raman 

scattering (ISRS) [36]. 

As pointed out earlier that dielectric permittivity exists within the Hamiltonian. Thus, the goal of this paper is to 

explore whether SRR system shows any sensitivity on ‘dielectric permittivity’ by quantum calculations hitherto 

not done on metamaterials. Moreover, the effect of change of ‘coupling’ between different SRR elements 

through engineering of their geometry is also highlighted. This study is quite realistic to understand the ‘quantum 

localization’ due to nonlinearity, which is definitely very much essential for many nano devices. Quantum 

localization behavior in Klein-Gordon (K-G) lattice has been studied by many researchers in terms of four atom 

lattice with periodic Bloch function by Proville [37], dimer case for targeted energy transfer by Aubry et al [38], 

delocalization and spreading behavior of wave-packets by Flach and coworkers [33,39]. QBs are characterized 

by various methods, as presented by Schulman [40] to describe quantum tunneling and the stability of discrete 

breathers. Here, our main focus will be on the temporal evolution of quanta, as it is also convenient to 

characterize QBs by this method. It has to be noted that in K-G lattice, the levels of ‘anharmonic potential 

energy’ are non-equidistant that could have important implications in applications. In various novel methods of 

preparation of metamaterials, the resonant frequency in the THz range has been proposed to be an interesting 

field of study [6,7] thereby making the present work more relevant. 

A generalized method is presented for any number of sites and quanta without periodic boundary condition to 

show the QB states in metamaterials. The main issue here is that: could we explain the phenomenon in its 

quantum-counterpart? or, could we observe some noticeable effects in the quantum-regime or not? - which are 

not explained in the classical regime. In such a case, we were inclined to see it by the dependence on dielectric 

permittivity, while plotting QB’s lifetime against number of quanta (see later in Section 3). Here, we also 

calculate critical times of redistribution of quanta that is proportional to QB’s lifetime in fs under various 

physical conditions with an eye on THz applications. It has to be noted that in an anharmonic K-G model, the 

levels in the potential energy are non-equidistant that could have implications from the application viewpoint 

[20,33]. 

Finally, it needs to be mentioned that despite the existence of an extensive literature in the area of metamaterials 

(see Ref [1-17] for references), this is concentrated only in the domain of classical breathers [14,17], including 

those on THZ applications [6,7]. Very few papers have been published from its quantum point of view [20]. 

Hence, we are trying to study these materials from its quantum perspective. The reason is obvious in the sense 

that it will lead to an information on quantum localization and hence on the application in the nano-structured 

devices. For example, one could make the fastest switch using metamaterials. by studying the temporal-evolution 

of the number of quanta. For this purpose, we have to theoretically study by varying the concerned parameters to 

optimize the results and then it could eventually be used in the device applications, such as antenna arrays, 

modulation instability based gadgets, quantum metamaterials based superconductors, etc. Hence, from the 

application point of view, the present study assumes special importance.  

       The paper is organized as follows: In Section II, the theoretical model of the one-dimensional chain of 

inductively coupled SRRs is described to obtain the Klein-Gordon equation for the system and then the 

quantization with bosonic operators is done for non-periodic boundary condition. In Section III, the results and 

discussion are presented for the time of redistribution of quanta against number of quanta at different values of 

dielectric permittivity. Section IV contains the conclusions. 

II. Theoretical Model 
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For our model formulation, let us consider the following case of three adjacent split-ring resonators, as shown in 

Fig. 1. A one-dimensional discrete, periodic array of identical non-linear SRRs, that consists of the simplest 

realization of a metamaterial in one dimension, is considered here. This array is shown here to emphasize that the 

concerned SRR domains are periodic array, and as pointed out by Segev and coworkers [22] that periodicity is 

important in creating discrete breathers. In one dimension, the SRRs form a linear array with their centers 

separated by distance d. Each of the SRRs has self-inductance L, and mutual inductance M. However, a device-

oriented optimized model can be considered for the antenna-array application having a varying L and M values. 

It should be mentioned that details about the above system and also about how the nearest neighbour interactions 

are considered for weaker coupling are given in ref. [13,14] for classical breathers. In ref. [1], wherein the effects 

of further than first neighbour couplings in the SRR system are also discussed. It is an anisotropic situation, since 

nonlinear medium does not tend to be isotropic. 

As done by Lazarides et al [13,14], the Hamiltonian of such a system involving the non-dimensional charge (q) 

and time (t) is given by: 
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The above eq. (1) can also be tackled by our type of discrete Hamiltonian for deriving Klein-Gordon equation in 

case of different ferroelectrics [24,25]. With a magnetic field H and magnetization σ of each SRR, the 

Hamiltonian is modified as: 
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Now, after putting the value of magnetization (σ), as done by Kivshar et al [15], we develop the Lagrangian and 

by using the variational principle (Euler-Lagrange equation), the governing equation in the x-direction is derived 

to show the Klein-Gordon dynamical equation as [1]: 
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)'21/(' λλ +=a  and )'21/(1 λ+=b ; here λ that is equal to ab being an interaction constant or coupling within 

the SRR system in a Klein-Gordon lattice, εl is the linear part of the dielectric permittivity that appears to be an 

important parameter for femtosecond response of QBs, i.e. for THz application (see later), α = +1 (−1) 

corresponds to a self-focusing (self-defocusing) in a nonlinear Kerr medium, Ω is a non-dimensional frequency 

factor and τ is the time, with non-zero external field involving a term Λ and finally a damping term (γ) [1]. The 
equ. (4) is useful for stability analysis, as normally done in a nonlinear system.  

 It should be pointed out that we have simply derived Klein-Gordon equation by variational principle from 

Lazarides Hamiltonian. It should be made clear that even our discrete Hamiltonian as given in refs. [24,25] with 

additional magnetic components could be used for this purpose. It is pertinent to mention that in our recent work 

[1], both K-G equation and nonlinear Schrodinger equation (NLSE) show dark and bright solitons, and also dark 

and bright breathers; however, K-G equation in addition shows breather pulses, whereas NLSE does not show 

such pulses. This work could also be relevant for important nonlinear optical materials. Next, let us describe the 

quantum breather state.  
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             The generalized Hamiltonian for the Klein-Gordon system for order parameter (yn) at nth site is written 

as: 
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The first term is momentum at nth site (pn), the second and third terms are nonlinear potential formulation and 

the last one contains a term (k) involving coupling. Here A and B are two constants having implication for 

breather formation. From the above equ. (5), after deducing the classical equation of motion and rescaling of 

time, we get the revised Hamiltonian as: 
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Now, in the corresponding equation of motion, we rescale time as follows: t = (1/α)τ  and we take α2
 = A/m , 

where m is the electronic mass. In such a case, the scale of time is 3.048 fs for a coupling value of 0.01, where η 

= B/4A and λ =k/2A. The term η involves linear dielectric permittivity (εl) and focusing (defocusing) nonlinearity 

(α) with a value of +1 (-1), which are also used in our numerical simulation [41]. Now, in terms of Klein-Gordon 

lattice, our generalized Hamiltonian needs to be quantized by using creation and annihilation Bosonic operators 

at the nth site as follows: 
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After having done the second quantization as described above, to account for the above mentioned terms in a 

proper way, a general ‘basis’ with non-number conserving of particles needs to be formed. In an important work 

done by Proville [37] (see references therein) the periodic boundary condition approach for four sites and an 

arbitrary number of particles are shown. However, the method presented above gives a generalized way to solve 

the system for arbitrary number of particles on arbitrary number of sites. So, our method is clearly distinguished 

from the other investigations. For the characterization of quantum discrete breathers, we need to make the 

Hamiltonian time-dependent. Let us resort to temporal evolution of number of quanta titi ntn ψψ ˆ)( =  at 

each site of the system. We take i-th eigenstate of the Hamiltonian, and then we make it time dependent as 

follows: 

∑ −=Ψ
i

iiii tiEbt ψ)/exp()( h        (8) 

where iψ  and Ei are the i-th eigenvector and eigenvalue respectively, t is time, the Planck’s constant (h) taken as 

unity and )0(Ψ= iib ψ   for each site i and for a given range of t, where )0(Ψ stands for initial state. In our 

computation by ‘mathematica’, we need to specify the initial states at t =0 wherein there is localization in the 

initial state and then as time is varied, there is a continuous evolution of the number of quanta [41]. This gives 

rise to QB’s lifetime in the femtosecond range that brings us to our main focus of relating this response to 

dielectric permittivity.   

          It should be mentioned that in contrast with the Discrete Non-Linear Schrodinger equation, where 

complete energy transfer takes place [29], in case of nonlinear K-G lattice, complete energy transfer does not 

take place between the anharmonic oscillators and there is a critical time of redistribution for the quanta [20]. 

This is an important point to be noted. In our computation, this critical time is measured when the number of 
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quanta meets or almost meets on the time axis. In the above approach, we have not used any periodic function, 

such as Bloch function. With this methodology, we can now proceed to deal with the application of quantum 

breathers in metamaterials. 

III. Results and Discussion 

          As a preamble for the existence of quantum breather state, here we first show an eigenspectrum of two-

phonon bound state (TPBS) that is a signature of the quantum breathers, by using the formalism as described in 

ref. [32] for a periodic boundary condition with a Bloch function. For SRR based metamaterials, for a very low 

value of permittivity of 0.002 with focusing nonlinearity α=+1 and a small value of interaction constant of 0.001, 

it is noted from Fig. 2 that a continuum of states with single phonon and QB state can also be observed. As 

revealed by our numerical simulation, the SRRs are weakly coupled and when the coupling value increases 

beyond 0.05, the formation of QB becomes relatively more difficult. The reason of taking a smaller value of 

permittivity is to merely show the presence of QB in metamaterials, even if these smaller values may be 
considered practically unrealistic. Having established the presence of quantum breather states in SRR based 

metamaterials, we may go to our main focus area of temporal evolution of the number of quanta in relation to the 

dielectric permittivity. 

 

Fig. 1: Three adjacent split-ring-resonators having self-inductance L and mutual inductance M. 

 

Fig. 2: Typical eigenspectrum for λ=0.001, εl = 0.002 and α=+1. The spectra represent single phonon continua and the 
quantum breather band or two-phonon bound state in the upper branch of the spectrum. 

 

 

Fig. 3: Temporal-evolution spectra for metamaterials with SRR assembly for 6 particles on 3 sites with 0,1,5)0( =ψ
, 

εl  

= 2, α = +1, and λ=0.01 (tre = 155.1 fs). 
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       For a non-periodic boundary condition, the temporal evolution spectra were generated from 4 to 12 quanta 

on 3 sites. The time of redistribution of quanta that is proportional to QB’s lifetime in fs was calculated from 

each spectrum. All these data are shown in Table-I for four different values of linear dielectric permittivity (εl) 

by changing 3 orders of magnitude from 0.002 to 2.0 and taking only one value of coupling of λ=0.01. 

       Typical spectra are shown in Fig. 3: for a relatively large value of linear dielectric permittivity, as taken by 

Lazarides et al [14] εl  = 2, for a focusing nonlinearity α = +1, and a smaller value of coupling between the SRR 

elements λ=0.01. This simulation was carried out for 6 particles on 3 sites with 0,1,5)0( =ψ . Here, the initial 

localization is mainly at the first site and then there is a fast redistribution of quanta between the other two sites 

until they become equal or almost equal, and the critical time for redistribution (tre) is 50.89. This is about 155.1 

fs for this value of coupling. This value of lifetime seems to be on the higher side as compared to that in 

ferroelectrics with 6 quanta (tre=13.45-14.27 for a coupling between 0.1 and 0.9) despite having the same number 

of quanta, but with lower value of coupling within the SRR assembly. It is known that by engineering the 

geometry of the SRR assembly, the interaction between SRR elements can be varied. Hence, the study of QB in 

non-periodic boundary condition in terms of temporal evolution of the number of quanta seems to reveal a 

different picture for different types of materials, which both are nonlinear optical materials. 

        

Fig. 4: The time of redistribution data (tre) against number of quanta at four different values of  linear 

permittivity showing a slight increase up to a value of  εl = 0.2, whereas there is a significant increase afterwards 

towards higher value; the timescale has to be multiplied by 3.048 fs for a coupling value of 0.01. 

Finally, the time of redistribution of quanta or QB’s lifetime (tre) is plotted against number of quanta at four 

different values of linear dielectric permittivity in Fig. 4. It is seen that tre is low for lower permittivity values of 

0.002 and 0.02, but it increases slightly up to a value of  εl = 0.2, whereas there is a significant increase 

afterwards towards higher value. This change is quite noticeable at lower number of quanta in that QB’s lifetime 

at 4 quanta changes from 76.8 fs to 266.8 fs between 0.2 and 2. TPBS parameters also show significant variation 

with coupling after a value of 0.05 making the quantum breather formation relatively more difficult. This shows 

that QB’s lifetime is quite sensitive to a change of coupling as well as linear dielectric permittivity of the 

metamaterials.  

It is pertinent to mention from the physics viewpoint that smaller values of dielectric permittivity (0.002 and 

0.02) were merely taken to show the variation of number operators in our simulation. These smaller values of 

permittivity may be considered unrealistic from the practical point of view, but Fig. 4 shows that these values 

have “insignificant” role in the overall behaviour of QB’s lifetime. This could be considered as an important 

piece of information for application in devices. For a highly absorbing sort of material, the linear part of the 

permittivity could be low enough, but it is difficult to ascertain its lower limit. For an increase of an order of 
magnitude in dielectric permittivity (i.e. 02 to 2.0), however, the variation of QB’s lifetime is still very much 

significant. A study of QB’s band gap against permittivity could possibly throw some light on the subject. It is 

pertinent to mention that for a macromolecule, Tretiak et al [42] observed that the lifetime of discrete breathers 

increases as the crystals become more and more defective. As the defect or disorder could create localization, it 
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is congenial for the formation of QB giving us insight on quantum localization [20,27,28]. This might be an 

important consideration for nano device applications.  

 

Fig. 5: Quantum breathers’ lifetime at 4 quanta  vs. dielectric permittivity showing the effect of permittivity at 

higher value; the timescale has to be multiplied by 3.048 fs for a coupling value of 0.01. 

In order to highlight the role of dielectric permittivity on the femtosecond response of quantum breathers, at 

lower quanta, the time of redistribution at 4 quanta is plotted against dielectric permittivity in Fig. 5, wherein it is 

clearly seen that there is a significant increase of QB’s lifetime between 0.2 and 2, as already revealed by Fig. 4 

for lower quanta. From a design viewpoint of SRR assembly in an antenna array, the behavior shown in Fig. 4 

and Fig. 5 indicates that for increasing QB’s lifetime, i.e. the femtosecond response, the dielectric permittivity 

which is embodied in our Hamiltonian has an important role to play in terms of changing the temporal evolution 

of the number of quanta. The quantization of the Klein-Gordon lattice was not merely done to show quantum 

metamaterials, but to show an important variation of dielectric permittivity on the femtosecond response of 

quantum breathers in the realm of quantum localization. This piece of information could be useful for future 

directions of study in quantum coding in various relevant devices. 

For the benefit of the experimentalists, one has to theoretically study temporal evolution of the quanta and vary 

the relevant parameters eventually to optimize the results, and only then one could make the device applications, 

e.g. in making antenna arrays, modulation instability based gadgets, in making quantum metamaterials based 

superconductors and so on. It is also emphasized in Ref. [30] and [31] that these engineered materials can be 

used in the quantum computation. The temporal evolution of the quanta at the correct value of coupling and 

dielectric permittivity could enable the required quantum coding for applications. Moreover, the proposed 

quantum metamaterials should allow the additional ways of controlling the ‘propagation’ of electromagnetic 

waves that are not possible by normal classical structures. For the experimentalists, this should pave the way to 

design better metamaterials for the required applications. Indeed, as emphasized by Rakhmanov et al [31], the 

coherent quantum dynamics of ‘qubits’ determines the THZ optical properties in the system.  Therefore, from the 

point of view of THz and other applications [6,7], the present study assumes particular importance, as this is also 

a new area of research. 

Table – I 

QB’s lifetime in fs at 4 different values of permittivity for 5 different quanta (coupling, λ=0.01) 

No. of Quanta εεεεl =0.002 εεεεl =0.02 εεεεl =0.2 εεεεl =2.0 

4 1.5 8.8 76.8 266.8 

6 2.6 4.8 22.8 155.1 

8 2.9 4.4 6.3 58.0 

10 3.7 4.6 4.4 24.8 

12 6.4 3.2 3.6 16.2 

Note: The difference of QB’s lifetime between two values of permittivity is to be noted. 
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IV. Conclusion 

In a periodic boundary condition, the branching out of two-phonon bound state from a single phonon continuum 

is a signature for quantum breathers in SRR based metamaterials, which is sensitive to coupling, as revealed by 
the eigenspectra. By quantizing a generalized Hamiltonian in Klein-Gordon lattice, for a non-periodic boundary 

condition, the temporal variation of the number of quanta has been studied with a main focus on its relation with 

dielectric permittivity. The temporal evolution spectra show a decrease of time of redistribution with increasing 

number of quanta for each value of dielectric permittivity except at lower value of 0.002, which does not have 

much significance. It is also observed that as the permittivity increases, the lifetime of QBs increases 

substantially from 76.8 to 266.8 fs after a value of 0.20 to 2.0 for 4 quanta and such incremental effect is reduced 
on increasing the number of quanta that could have implication in the design of relevant devices. This piece of 

information is considered useful for a future study in this new field of investigation of QBs in metamaterials, e.g. 

in  THz applications of QBs in nonlinear optical materials. The significant role of dielectric permittivity that is 

embodied in our generalized Hamiltonian on the femtosecond response of quantum breathers in metamaterials 

might pave the way for newer quantum metamaterials. Here, for antenna array applications, this attempt in the 

realm of ‘quantum localization’ is expected to trigger newer investigations on this evolving subject of discrete 

breathers.  
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